• Предмет: Алгебра
  • Автор: Rezilina
  • Вопрос задан 10 лет назад

Найти точку min y=16-16/x-x

Ответы

Ответ дал: kalbim
0
Вначале найдем производную функции:
y' = -16*(-1/x^2) - 1 = (16/x^2) - 1
Приравниваем производную к нулю: (16/x^2)-1=0,  16/x^2=1, x^2=16, x=+-4
Теперь определим, как производная ведет себя при переходе через эти точки:
от -бесконечности до -4: отрицательная
от -4 до +4: положительная
от +4 до +бесконечности: отрицательная.
Минимумом функции является точка х=-4 - т.к. при переходе через эту точку производная меняет свой знак с минуса на плюс.
Вас заинтересует