Отрезок АК - биссектриса треугольника АВС, на стороне АВ обозначено точку М, так что АМ = МК
доведите МК параллельная АС
Ответы
Ответ дал:
0
Чертеж наверное сам нарисуешь. Вот рассуждения: т.к. AK - биссектриса, то ∠MAK = ∠CAK. Т.к. AM = MK, то ΔAMK - равнобедренный, поэтому
∠MAK = ∠MKA.
Поэтому ∠CAK = ∠MKA - т.е. равны накрест лежащие углы при прямых MK и AC, и секущей AK, то отсюда следует, что MK║AC. Ч.т.д.
∠MAK = ∠MKA.
Поэтому ∠CAK = ∠MKA - т.е. равны накрест лежащие углы при прямых MK и AC, и секущей AK, то отсюда следует, что MK║AC. Ч.т.д.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад