Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        Формула тангенса суммы: 
tg (x + y) = (tg x + tg y) / (1 - tg x tg y)
Отсюда tg x + tg y = tg(x +y) * (1 - tg x tg y)
Если положить x = y, получится формула тангенса двойного угла
tg 2x = 2 tg x / (1 - 2 tg^2 x)
Преобразуем выражение в левой части:
tg x + tg 2x + tg 3x = tg 3x * (1 - tg x tg 2x) + tg 3x = tg 3x (2 - tg x tg 2x) = tg 3x * (2 - tg x * 2 tg x / (1 - tg^2 x)) = 2 tg 3x * (1 - 2 tg^2 x) / (1 - tg^2 x)
2 tg 3x * (1 - 2 tg^2 x) / ( 1 - tg^2 x) = 0
tg 3x = 0 или 1 - 2 tg^2 x = 0
3x = πk, k ∈ Z или x = πn +- arctg 1/√2, n ∈ Z
x = πk/3, k ∈ Z или x = πn +- arctg 1/√2, n ∈ Z
При таких x все тангенсы существуют, посторонних корней не появилось.
Ответ. x = πk/3, k ∈ Z или x = πn +- arctg 1/√2, n ∈ Z
                                        
                                        
                                tg (x + y) = (tg x + tg y) / (1 - tg x tg y)
Отсюда tg x + tg y = tg(x +y) * (1 - tg x tg y)
Если положить x = y, получится формула тангенса двойного угла
tg 2x = 2 tg x / (1 - 2 tg^2 x)
Преобразуем выражение в левой части:
tg x + tg 2x + tg 3x = tg 3x * (1 - tg x tg 2x) + tg 3x = tg 3x (2 - tg x tg 2x) = tg 3x * (2 - tg x * 2 tg x / (1 - tg^2 x)) = 2 tg 3x * (1 - 2 tg^2 x) / (1 - tg^2 x)
2 tg 3x * (1 - 2 tg^2 x) / ( 1 - tg^2 x) = 0
tg 3x = 0 или 1 - 2 tg^2 x = 0
3x = πk, k ∈ Z или x = πn +- arctg 1/√2, n ∈ Z
x = πk/3, k ∈ Z или x = πn +- arctg 1/√2, n ∈ Z
При таких x все тангенсы существуют, посторонних корней не появилось.
Ответ. x = πk/3, k ∈ Z или x = πn +- arctg 1/√2, n ∈ Z
Вас заинтересует
                
                        2 года назад
                    
                
                        2 года назад
                    
                
                        7 лет назад
                    
                
                        9 лет назад
                    
                
                        10 лет назад