вычислить объём тела, полученного вращением вокруг оси ох фигуры, ограниченной гиперболой 9х^2-25y^2=225, прямой 3х-10у=0 и положительной полуосью ох
Ответы
Ответ дал:
0
Тело, полученное вращением вокруг оси Ох фигуры, ограниченной гиперболой 9х²-25y²=225, прямой 3х-10у=0 и положительной полуосью Ох, представляет собой конус с выемкой в основании однополостного гиперболоида вращения .
Находим координаты крайних точек.
Подставляем переменную у в уравнение гиперболы из уравнения прямой.
Прямая 3х-10у=0, у = 0,3х.
Гипербола 9х²-25*0,09х²=225,
х²(9 - 2,25) = 225,
6,75х² = 225,
х = √(100/3) = 10/√3. Отрицательные значения в соответствии с заданием отбрасываем.
Находим координаты вершины гиперболы, для этого преобразуем заданное уравнение гиперболы в каноническое:
Гипербола 9х²-25y²=225. Разделим обе части на 225.
(х²/25) - (у²/9) = 1.
Отсюда имеем а = 5. Координаты вершины (5;0).
Так как прямая 3х-10у=0 проходит через начало координат, то вершина конуса имеет координаты (0;0).
Радиус основания конуса равен ординате точки пересечения гиперболы и прямой: у = 0,3*(10/√3) = √3.
Площадь основания конуса So = πR² = π(√3)² = 3π.
Объём конуса V = (1/3)SoH = (1/3)*3π*(10/√3) = 10π/√3 ≈ 18,13799.
Объём гиперболической выемки равен интегралу:
≈ 3,5578.
Объём тела равен (10π/√3) - ((10π(9-5√3)/3) ≈ 18,13799 - 3,5578 ≈ 14,58019 куб.ед.
Находим координаты крайних точек.
Подставляем переменную у в уравнение гиперболы из уравнения прямой.
Прямая 3х-10у=0, у = 0,3х.
Гипербола 9х²-25*0,09х²=225,
х²(9 - 2,25) = 225,
6,75х² = 225,
х = √(100/3) = 10/√3. Отрицательные значения в соответствии с заданием отбрасываем.
Находим координаты вершины гиперболы, для этого преобразуем заданное уравнение гиперболы в каноническое:
Гипербола 9х²-25y²=225. Разделим обе части на 225.
(х²/25) - (у²/9) = 1.
Отсюда имеем а = 5. Координаты вершины (5;0).
Так как прямая 3х-10у=0 проходит через начало координат, то вершина конуса имеет координаты (0;0).
Радиус основания конуса равен ординате точки пересечения гиперболы и прямой: у = 0,3*(10/√3) = √3.
Площадь основания конуса So = πR² = π(√3)² = 3π.
Объём конуса V = (1/3)SoH = (1/3)*3π*(10/√3) = 10π/√3 ≈ 18,13799.
Объём гиперболической выемки равен интегралу:
Объём тела равен (10π/√3) - ((10π(9-5√3)/3) ≈ 18,13799 - 3,5578 ≈ 14,58019 куб.ед.
Вас заинтересует
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад