Высота правильной треугольной призмы АВСА1В1С1 = 3, а сторона основания = 8. Найти периметр сечения, проходящего через вершину А и середины рёбер А1В1 и А1С1
Ответы
Ответ дал:
0
1. Рассмотрим треугольник АА1М. Он прямоугольный (по условию). Найдём АМ по теореме Пифагора:
АМ²=АА1²+А1М²
АМ²=3²+4²
АМ²=25
АМ=5
2. Треугольники АА1М и АА1N равны как прямоугольные по двум катетам (А1М=А1N по условию, АА1 - общая). Тогда АМ=AN=5.
3. Рассмотрим треугольники С1А1В1 и МАN. Они подобны по двум сторонам и общему углу С1А1В1 - А1M:A1C1=A1N:A1B1=1:2. Тогда MN=½C1B1=8:2=4.
P AMN=AM+AN+MN=5+5+4=14
Ответ: 14.
АМ²=АА1²+А1М²
АМ²=3²+4²
АМ²=25
АМ=5
2. Треугольники АА1М и АА1N равны как прямоугольные по двум катетам (А1М=А1N по условию, АА1 - общая). Тогда АМ=AN=5.
3. Рассмотрим треугольники С1А1В1 и МАN. Они подобны по двум сторонам и общему углу С1А1В1 - А1M:A1C1=A1N:A1B1=1:2. Тогда MN=½C1B1=8:2=4.
P AMN=AM+AN+MN=5+5+4=14
Ответ: 14.
Приложения:
Вас заинтересует
1 год назад
1 год назад
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад