• Предмет: Геометрия
  • Автор: Snikcers
  • Вопрос задан 10 лет назад

В окружности с центром О проведены две равные хорды КЛ и МН. На хорды опущены перпендикуляры ОН и ОС. Доказать, что ОН и ОС равны.

Ответы

Ответ дал: galina57
0

Треугольник КОЛ = треугольнику МОN (по трём сторонам) - равнобедренные, высоты являются медианами, следовательно КН=СМ как половины равных сторон.

Треугольник КОН = треугольнику СОМ (по гипотенузе и катету), значит ОН=ОС.

Вас заинтересует