• Предмет: Математика
  • Автор: Vishnya1452
  • Вопрос задан 8 лет назад

x(1+y^2)dx=ydy
решить уравнение правильно

Ответы

Ответ дал: SYSTEMCORE
0
displaystyle x(1+y^2)dx=ydy

Это и подобное дифференциальное уравнение решается методом "деления переменных".

displaystyle x(1+y^2)dx=ydy\\xdx=frac{ydy}{1+y^2}\\ intlimits {xdx} =intlimits {frac{ydy}{1+y^2}}\\frac{x^2}2+C=frac{1}2intlimits {frac{dy^2}{1+y^2}}\\x^2+C=intlimits {frac{d(1+y^2)}{1+y^2}}\\x^2+C=ln|1+y^2|\\1+y^2=e^{x^2+C}\\y=бsqrt{e^{x^2+C}-1}
Вас заинтересует