Ответы
Ответ дал:
0
по возможности подробно расписывать не буду
1)
![displaystyle lim_{x to 8} frac{ sqrt{2x+9}-5}{ sqrt[3]{x}-2}= lim_{x to 8} frac{( sqrt{2x+9}-5)( sqrt[3]{x^2}+2 sqrt[3]{x}+4)}{x-8}=\\= lim_{x to 8} ( sqrt[3]{x^2}+2 sqrt[3]{x}+4 ) frac{(2x+9-25)}{(x-8)( sqrt{2x+9}+5)}=\\= lim_{x to 8} ( sqrt[3]{x^2}+2 sqrt[3]{x}+4)* frac{2(x-8)}{(x-8)( sqrt{2x+9}+5)}=\\=(2^2+2*2+4)*( frac{2}{5+5})= frac{12}{5} displaystyle lim_{x to 8} frac{ sqrt{2x+9}-5}{ sqrt[3]{x}-2}= lim_{x to 8} frac{( sqrt{2x+9}-5)( sqrt[3]{x^2}+2 sqrt[3]{x}+4)}{x-8}=\\= lim_{x to 8} ( sqrt[3]{x^2}+2 sqrt[3]{x}+4 ) frac{(2x+9-25)}{(x-8)( sqrt{2x+9}+5)}=\\= lim_{x to 8} ( sqrt[3]{x^2}+2 sqrt[3]{x}+4)* frac{2(x-8)}{(x-8)( sqrt{2x+9}+5)}=\\=(2^2+2*2+4)*( frac{2}{5+5})= frac{12}{5}](https://tex.z-dn.net/?f=displaystyle++lim_%7Bx+to++8%7D++frac%7B+sqrt%7B2x%2B9%7D-5%7D%7B+sqrt%5B3%5D%7Bx%7D-2%7D%3D+lim_%7Bx+to++8%7D++frac%7B%28+sqrt%7B2x%2B9%7D-5%29%28+sqrt%5B3%5D%7Bx%5E2%7D%2B2+sqrt%5B3%5D%7Bx%7D%2B4%29%7D%7Bx-8%7D%3D%5C%5C%3D+lim_%7Bx+to++8%7D+%28+sqrt%5B3%5D%7Bx%5E2%7D%2B2+sqrt%5B3%5D%7Bx%7D%2B4+%29+frac%7B%282x%2B9-25%29%7D%7B%28x-8%29%28+sqrt%7B2x%2B9%7D%2B5%29%7D%3D%5C%5C%3D+lim_%7Bx+to++8%7D+%28+sqrt%5B3%5D%7Bx%5E2%7D%2B2+sqrt%5B3%5D%7Bx%7D%2B4%29%2A+frac%7B2%28x-8%29%7D%7B%28x-8%29%28+sqrt%7B2x%2B9%7D%2B5%29%7D%3D%5C%5C%3D%282%5E2%2B2%2A2%2B4%29%2A%28+frac%7B2%7D%7B5%2B5%7D%29%3D+frac%7B12%7D%7B5%7D+++++)
2) правило Лопиталя

3)

4)
![displaystyle lim_{n to infty} ( sqrt[3]{n^2-n^3}+ sqrt[3]{n^3})= lim_{n to infty} sqrt[3]{n^2} ( sqrt[3]{1-n}+ sqrt[3]{n})=\\= lim_{n to infty} sqrt[3]{n^2} frac{(1-n+n)}{( sqrt[3]{(1-n)^2}- sqrt[3]{n-n^2}+ sqrt[3]{n^2})}=\\= lim_{n to infty} frac{1}{( sqrt[3]{ (frac{1}{n}-1)^2- sqrt[3]{ frac{1}{n}-1}+1})}=\\= frac{1}{1+1+1}= frac{1}{3} displaystyle lim_{n to infty} ( sqrt[3]{n^2-n^3}+ sqrt[3]{n^3})= lim_{n to infty} sqrt[3]{n^2} ( sqrt[3]{1-n}+ sqrt[3]{n})=\\= lim_{n to infty} sqrt[3]{n^2} frac{(1-n+n)}{( sqrt[3]{(1-n)^2}- sqrt[3]{n-n^2}+ sqrt[3]{n^2})}=\\= lim_{n to infty} frac{1}{( sqrt[3]{ (frac{1}{n}-1)^2- sqrt[3]{ frac{1}{n}-1}+1})}=\\= frac{1}{1+1+1}= frac{1}{3}](https://tex.z-dn.net/?f=displaystyle++lim_%7Bn+to+infty%7D+%28+sqrt%5B3%5D%7Bn%5E2-n%5E3%7D%2B+sqrt%5B3%5D%7Bn%5E3%7D%29%3D+lim_%7Bn+to+infty%7D++sqrt%5B3%5D%7Bn%5E2%7D+%28+sqrt%5B3%5D%7B1-n%7D%2B+sqrt%5B3%5D%7Bn%7D%29%3D%5C%5C%3D+lim_%7Bn+to+infty%7D++sqrt%5B3%5D%7Bn%5E2%7D++frac%7B%281-n%2Bn%29%7D%7B%28+sqrt%5B3%5D%7B%281-n%29%5E2%7D-+sqrt%5B3%5D%7Bn-n%5E2%7D%2B+sqrt%5B3%5D%7Bn%5E2%7D%29%7D%3D%5C%5C%3D+lim_%7Bn+to+infty%7D++frac%7B1%7D%7B%28+sqrt%5B3%5D%7B+%28frac%7B1%7D%7Bn%7D-1%29%5E2-+sqrt%5B3%5D%7B+frac%7B1%7D%7Bn%7D-1%7D%2B1%7D%29%7D%3D%5C%5C%3D+++frac%7B1%7D%7B1%2B1%2B1%7D%3D+frac%7B1%7D%7B3%7D++)
1)
2) правило Лопиталя
3)
4)
Ответ дал:
0
Спасибо большое Надя!
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад