Известно, что уравнение
x^2+px+q=112
имеет два различных целых корня, причём p и q — простые числа.
Найдите наибольшее возможное значение q.
                        
                            
                            
                    Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        1) p = 2.
x^2 + 2x + q = 112
x^2 + 2x + 1 = 113 - q
(x + 1)^2 = 113 - q
113 - q должно быть полным квадратом. Если q — максимально возможное, то это квадрат как можно меньшего числа. Перебираем:
113 - q = 1^2: q = 112 — не простое число
113 - q = 2^2: q = 109 — простое!
2) p > 2, тогда p — нечетно.
x^2 + px + (q - 112) = 0
По теореме Виета сумма корней равна -p, произведение равно q - 112. Сумма двух целых корней оказалась нечётной, значит, это одно чётное число и одно нечётное, поэтому их произведение чётно, значит, q чётно. Единственное чётное простое число это 2, и оно меньше 109, поэтому нас не интересует.
Ответ. 109.
                                        
                                        
                                x^2 + 2x + q = 112
x^2 + 2x + 1 = 113 - q
(x + 1)^2 = 113 - q
113 - q должно быть полным квадратом. Если q — максимально возможное, то это квадрат как можно меньшего числа. Перебираем:
113 - q = 1^2: q = 112 — не простое число
113 - q = 2^2: q = 109 — простое!
2) p > 2, тогда p — нечетно.
x^2 + px + (q - 112) = 0
По теореме Виета сумма корней равна -p, произведение равно q - 112. Сумма двух целых корней оказалась нечётной, значит, это одно чётное число и одно нечётное, поэтому их произведение чётно, значит, q чётно. Единственное чётное простое число это 2, и оно меньше 109, поэтому нас не интересует.
Ответ. 109.
Вас заинтересует
                
                        2 года назад
                    
                
                        3 года назад
                    
                
                        9 лет назад
                    
                
                        9 лет назад
                    
                
                        10 лет назад