На стороне AD и диагонали AC параллелограмма ABCD взяты точки E и F соответственно так, что AC=3AF и AD=4AE. Прямая EF пересекает сторону BC в точке G. Найдите площадь параллелограмма, если площадь четырехугольника ABGF равна 10.
Ответы
Ответ дал:
0
Диагональ делит параллелограмм пополам.
S(ABC)=S(CAD) =S(ABCD)/2
Площади треугольников с равным углом относятся как произведения сторон, содержащих угол.
AC=3AF, AD=4AE
S(FAE)/S(CAD) =AF*AE/AC*AD =1/12 <=>
S(FAE)= S(CAD)/12 =S(ABC)/12
△FAE~△FCG (углы при основаниях равны как накрест лежащие при AD||BC)
AF/CF =1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия.
S(FAE)/S(FCG) =1/4 <=>
S(FCG)= 4S(FAE) =S(ABC)/3
S(ABGF)= 2S(ABC)/3 =S(ABCD)/3 <=>
S(ABCD)= 3S(ABGF) =30
S(ABC)=S(CAD) =S(ABCD)/2
Площади треугольников с равным углом относятся как произведения сторон, содержащих угол.
AC=3AF, AD=4AE
S(FAE)/S(CAD) =AF*AE/AC*AD =1/12 <=>
S(FAE)= S(CAD)/12 =S(ABC)/12
△FAE~△FCG (углы при основаниях равны как накрест лежащие при AD||BC)
AF/CF =1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия.
S(FAE)/S(FCG) =1/4 <=>
S(FCG)= 4S(FAE) =S(ABC)/3
S(ABGF)= 2S(ABC)/3 =S(ABCD)/3 <=>
S(ABCD)= 3S(ABGF) =30
Приложения:

Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад