• Предмет: Геометрия
  • Автор: mtomi22281
  • Вопрос задан 8 лет назад

Изобразите сечение единичного куба а. .. d1 , проходящее через вершину с и середины ребер аа1 dd1 . Найдите его площадь.

Ответы

Ответ дал: dnepr1
0
Сечение имеет вид прямоугольника.
Одна сторона его равна ребру куба, то есть 1.
Вторая равна  sqrt{1^2+(1/2)^2} = sqrt{5/4} = sqrt{5} /2.
Площадь сечения равна: S = 1*(√5/2) = √5/2 кв.ед.
Приложения:
Вас заинтересует