Найти точку пересечения плоскости A: 3x-z=7 прямой l, перпендикулярной плоскости A и проходящей через точку M(-3;2;4)
Ответы
Ответ дал:
0
Составим параметрические уравнение прямой, перпендикулярной плоскости А: 3x-z-7=0 и проходящей через точку М( -3,2,4).
У этой прямой направляющий вектор будет совпадать с нормальным вектором плоскости А:
.
Точку пересечения прямой и плоскости можно найти, подставив вместо х, у, и z выражения из параметрических уравнений прямой.

Мы нашли значение параметра t=2 , при котором при подстановке его в параметрические уравнения, получим координаты точки пересечения прямой и плоскости M₀.

У этой прямой направляющий вектор будет совпадать с нормальным вектором плоскости А:
Точку пересечения прямой и плоскости можно найти, подставив вместо х, у, и z выражения из параметрических уравнений прямой.
Мы нашли значение параметра t=2 , при котором при подстановке его в параметрические уравнения, получим координаты точки пересечения прямой и плоскости M₀.
Вас заинтересует
3 года назад
3 года назад
9 лет назад
9 лет назад