• Предмет: Геометрия
  • Автор: olyaluzina00
  • Вопрос задан 8 лет назад

Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Найдите угол АВС, если угол ВАС равен 9 градусов

Ответы

Ответ дал: siestarjoki
0
Диаметр соединяет две точки окружности и проходит через её центр. Если центр описанной окружности лежит на стороне AB, то AB - диаметр. Угол С - прямой, так как опирается на диаметр AB. Треугольник ABC - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
∠B= 90°-∠A =90°-9° =81°
Ответ дал: assc1
0

Если центр описанной окружности лежит на стороне треугольника, то треугольник является прямоугольным, с диаметром в качестве гипотенузы.
А угол, опирающийся на гипотенузу-диаметр является прямым(90 град. )
В нашем случае - гипотенуза - AB - диаметр. Угол C =90, Угол BAC = 9
Тогда угол ABC = 90-9=81 градус.
Вас заинтересует