Ответы
Ответ дал:
0
800.

![y' = 0-[(e^{sin^2 3x})'*cos^2 3x+e^{sin^2 3x}*(cos^2 3x)'] = \ \ = -[e^{sin^2 3x} *(sin^2 3x)' *cos^2 3x+ \ \ + e^{sin^2 3x} *2cos3x *(cos3x)'] = \ \ = -[e^{sin^2 3x} *2sin3x *(sin3x)' *cos^2 3x+ \ \ + e^{sin^2 3x} *2cos3x *(-3sin3x) ] = \ \ = - 6e^{sin^2 3x} [sin3x *cos3x *cos^2 3x - cos3x *sin3x] = \ \ y' = 0-[(e^{sin^2 3x})'*cos^2 3x+e^{sin^2 3x}*(cos^2 3x)'] = \ \ = -[e^{sin^2 3x} *(sin^2 3x)' *cos^2 3x+ \ \ + e^{sin^2 3x} *2cos3x *(cos3x)'] = \ \ = -[e^{sin^2 3x} *2sin3x *(sin3x)' *cos^2 3x+ \ \ + e^{sin^2 3x} *2cos3x *(-3sin3x) ] = \ \ = - 6e^{sin^2 3x} [sin3x *cos3x *cos^2 3x - cos3x *sin3x] = \ \](https://tex.z-dn.net/?f=y%27+%3D+0-%5B%28e%5E%7Bsin%5E2+3x%7D%29%27%2Acos%5E2+3x%2Be%5E%7Bsin%5E2+3x%7D%2A%28cos%5E2+3x%29%27%5D+%3D+%5C+%5C+%3D+-%5Be%5E%7Bsin%5E2+3x%7D+%2A%28sin%5E2+3x%29%27+%2Acos%5E2+3x%2B+%5C++%5C+%2B+e%5E%7Bsin%5E2+3x%7D+%2A2cos3x+%2A%28cos3x%29%27%5D+%3D+%5C+%5C+%3D+-%5Be%5E%7Bsin%5E2+3x%7D+%2A2sin3x+%2A%28sin3x%29%27+%2Acos%5E2+3x%2B+%5C++%5C+%2B+e%5E%7Bsin%5E2+3x%7D+%2A2cos3x+%2A%28-3sin3x%29+%5D+%3D++%5C++%5C+%3D+-+6e%5E%7Bsin%5E2+3x%7D+%5Bsin3x+%2Acos3x+%2Acos%5E2+3x+-+cos3x+%2Asin3x%5D+%3D++%5C++%5C+)
![= - 6e^{sin^2 3x}*sin3x *cos3x* [cos^2 3x - 1] = \ \ = - 6e^{sin^2 3x}*sin3x *cos3x* [-sin^2 3x] = 6e^{sin^2 3x}*sin^33x *cos3x = - 6e^{sin^2 3x}*sin3x *cos3x* [cos^2 3x - 1] = \ \ = - 6e^{sin^2 3x}*sin3x *cos3x* [-sin^2 3x] = 6e^{sin^2 3x}*sin^33x *cos3x](https://tex.z-dn.net/?f=%3D+-+6e%5E%7Bsin%5E2+3x%7D%2Asin3x+%2Acos3x%2A+%5Bcos%5E2+3x+-+1%5D+%3D++%5C++%5C+%3D+-+6e%5E%7Bsin%5E2+3x%7D%2Asin3x+%2Acos3x%2A+%5B-sin%5E2+3x%5D+%3D+6e%5E%7Bsin%5E2+3x%7D%2Asin%5E33x+%2Acos3x)
801.
![y = ln frac{2ln^2 sinx + 3}{2ln^2 sinx - 3} \ \ y' = frac{1}{ frac{2ln^2 sinx + 3}{2ln^2 sinx - 3} } *( frac{2ln^2 sinx + 3}{2ln^2 sinx - 3} )'= \ \ = frac{2ln^2 sinx - 3}{2ln^2 sinx + 3} * frac{(2ln^2 sinx + 3)'*(2ln^2 sinx - 3) - (2ln^2 sinx + 3)*(2ln^2 sinx - 3)' }{(2ln^2 sinx - 3)^2} = \ \ = frac{1}{4ln^4 sinx - 9} * [4lnsinx* frac{1}{sinx}*cosx* (2ln^2 sinx - 3) - \ \ - (2ln^2 sinx + 3)*4lnsinx * frac{1}{sinx} *cosx ]= \ \ y = ln frac{2ln^2 sinx + 3}{2ln^2 sinx - 3} \ \ y' = frac{1}{ frac{2ln^2 sinx + 3}{2ln^2 sinx - 3} } *( frac{2ln^2 sinx + 3}{2ln^2 sinx - 3} )'= \ \ = frac{2ln^2 sinx - 3}{2ln^2 sinx + 3} * frac{(2ln^2 sinx + 3)'*(2ln^2 sinx - 3) - (2ln^2 sinx + 3)*(2ln^2 sinx - 3)' }{(2ln^2 sinx - 3)^2} = \ \ = frac{1}{4ln^4 sinx - 9} * [4lnsinx* frac{1}{sinx}*cosx* (2ln^2 sinx - 3) - \ \ - (2ln^2 sinx + 3)*4lnsinx * frac{1}{sinx} *cosx ]= \ \](https://tex.z-dn.net/?f=y+%3D+ln+frac%7B2ln%5E2+sinx+%2B+3%7D%7B2ln%5E2+sinx+-+3%7D+%5C++%5C+y%27+%3D++frac%7B1%7D%7B+frac%7B2ln%5E2+sinx+%2B+3%7D%7B2ln%5E2+sinx+-+3%7D+%7D+%2A%28+frac%7B2ln%5E2+sinx+%2B+3%7D%7B2ln%5E2+sinx+-+3%7D+%29%27%3D++%5C++%5C+%3D+frac%7B2ln%5E2+sinx+-+3%7D%7B2ln%5E2+sinx+%2B+3%7D+%2A+frac%7B%282ln%5E2+sinx+%2B+3%29%27%2A%282ln%5E2+sinx+-+3%29+-+%282ln%5E2+sinx+%2B+3%29%2A%282ln%5E2+sinx+-+3%29%27+%7D%7B%282ln%5E2+sinx+-+3%29%5E2%7D+%3D+%5C++%5C+%3D+frac%7B1%7D%7B4ln%5E4+sinx+-+9%7D+%2A+%5B4lnsinx%2A+frac%7B1%7D%7Bsinx%7D%2Acosx%2A+%282ln%5E2+sinx+-+3%29+-+%5C++%5C+-++%282ln%5E2+sinx+%2B+3%29%2A4lnsinx+%2A++frac%7B1%7D%7Bsinx%7D+%2Acosx+%5D%3D++%5C++%5C+)
801.
Вас заинтересует
2 года назад
3 года назад
10 лет назад