Ответы
Ответ дал:
1
АD⊥BK, CE⊥BK => ∠ADK=90°=∠KEC
При секущей DE ∠ADK = ∠КЕС, а они накрест лежащие, следовательно, отрезки АD и CE лежат на параллельных прямых и являются параллельными отрезками.
Получается, что четырехугольник АDCE - параллелограм (AD=CE (по усл.), АD||CE). AC и DE - диагонали ADCE, К - точка их пересечения, значит АК=КС => ВК - медиана ΔАВС
При секущей DE ∠ADK = ∠КЕС, а они накрест лежащие, следовательно, отрезки АD и CE лежат на параллельных прямых и являются параллельными отрезками.
Получается, что четырехугольник АDCE - параллелограм (AD=CE (по усл.), АD||CE). AC и DE - диагонали ADCE, К - точка их пересечения, значит АК=КС => ВК - медиана ΔАВС
Приложения:
Алексей1111111а:
огромное спасибо!
Вас заинтересует
1 год назад
1 год назад
2 года назад
2 года назад
3 года назад
8 лет назад