В треугольнике ABC известны стороны: AB=15, BC=25 и AC=16. Прямая проходящая через вершину A перпендикулярно биссектрисе треугольника BN, пересекает сторону BC в точке M. Докажите, что биссектриса угла C делит пополам отрезок MN
Ответы
Ответ дал:
0
Треугольник АВМ по построению - равнобедренный, АВ = ВМ = 15.
Отрезок МС = 25 - 15 = 10.
Сторона АС делится точкой N в отношении 15/25 = 3/5.
Отрезок NС = 16*5/8 = 10.
То есть треугольник CMN - равнобедренный.
Поэтому биссектриса угла С делит основание его MN пополам.
Отрезок МС = 25 - 15 = 10.
Сторона АС делится точкой N в отношении 15/25 = 3/5.
Отрезок NС = 16*5/8 = 10.
То есть треугольник CMN - равнобедренный.
Поэтому биссектриса угла С делит основание его MN пополам.
Приложения:
Ответ дал:
0
откуда 58???
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад