Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 7,5, а AB = 2
Ответы
Ответ дал:
0
Обозначим центр окружности на стороне АС за О. По свойству касательной ОВ перпендикулярно АВ.
Находим АО как гипотенузу с учётом, что ОВ равно радиусу окружности.
АО = √(4²+7,5²) = √(16+ 56,25) = √72,25 = 8,5.
Теперь определяем АС = АО+ОС.
На основе задания делаем вывод, что ОВ = ОС как радиусы.
Тогда АС = 8,5 + 7,5 = 16
Находим АО как гипотенузу с учётом, что ОВ равно радиусу окружности.
АО = √(4²+7,5²) = √(16+ 56,25) = √72,25 = 8,5.
Теперь определяем АС = АО+ОС.
На основе задания делаем вывод, что ОВ = ОС как радиусы.
Тогда АС = 8,5 + 7,5 = 16
Вас заинтересует
2 года назад
3 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад