задумано двузначное число которое делится на 5 к нему справа приписали и тоже число ещё раз оказалось что получившееся четырехзначное число делится на 11 какое число задумали
Ответы
Ответ дал:
0
обозначим число AB = 10A + B, по условию оно делится на 5
число ABAB = 1010A + 101B = 101(10A + B) делится на 11, но 101 не делится на 11, поэтому 10A + B делится на 11
получаем, что AB делится и на 5 и на 11, т.е. делится на 55
единственное двузначное число: 55
Ответ: 55
число ABAB = 1010A + 101B = 101(10A + B) делится на 11, но 101 не делится на 11, поэтому 10A + B делится на 11
получаем, что AB делится и на 5 и на 11, т.е. делится на 55
единственное двузначное число: 55
Ответ: 55
Ответ дал:
0
Ответ 5555 потому что там написано четырехзначное
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад