• Предмет: Алгебра
  • Автор: anna05141
  • Вопрос задан 8 лет назад

Решите неравенство:

Приложения:

Ответы

Ответ дал: xtoto
0
(1)
log_3^2(4-x) textless  1\\ log_3^2(4-x)-1^2 textless  0\\ (log_3(4-x)+1)*(log_3(4-x)-1) textless  0\\ -1 textless  log_3(4-x) textless  1\\ begin{equation*} 	begin{cases} log_3(4-x) textgreater  -1\ log_3(4-x) textless  1 end{cases} end{equation*}\\ begin{equation*} begin{cases} log_3(4-x) textgreater  log_3(3^{-1})\ log_3(4-x) textless  log_3(3) end{cases} end{equation*} begin{equation*} begin{cases} 4-x textgreater  frac{1}{3}\ 4-x textless  3\ 4-x textgreater  0 end{cases} end{equation*}

begin{equation*} begin{cases} x textless  frac{11}{3}\ x textgreater  1\ x textless  4 end{cases} end{equation*}

xin(1; frac{11}{3})
---------------------------------------
(2)
log_{0.2}^2(x)-5*log_{0.2}(x) textless  -6\\ log_{0.2}^2(x)-5*log_{0.2}(x)+6 textless  0\\ (log_{0.2}(x)-2)*(log_{0.2}(x)-3) textless  0\\ 2 textless  log_{0.2}(x) textless  3\\ 2 textless  log_{5^{-1}}(x) textless  3\\ 2 textless  -log_{5}}(x) textless  3\\ left { {{log_{5}}(x) textless  -2} atop {log_{5}}(x) textgreater  -3}} right. ;\\ left { {{log_{5}}(x) textless  log_5(5^{-2})} atop {log_{5}}(x) textgreater  log_5(5^{-3})}} right. \\ left { {{x textless  frac{1}{25}} atop {x textgreater  frac{1}{125}}}\ atop {x textgreater  0} right. \\ xin(frac{1}{125}}; frac{1}{25}})
Вас заинтересует