Через точку A, не лежащую на окружности, к этой окружности проведите касательные AB и AC. Точки B и C - точки касания. Докажите, что AB = AC
Ответы
Ответ дал:
0
Пусть О - центр окружности
АО - биссектриса угла А
Треугольники
АОВ и АОС прямоугольные (так как касательная перпендикулярна радиусу в точке касания) и у них общая сторона АО и равные острые углы (так как АО - биссектриса) следовательно эти треугольники равны. Тогда и соответствующие стороны равны. Т.е. АВ = АС
АО - биссектриса угла А
Треугольники
АОВ и АОС прямоугольные (так как касательная перпендикулярна радиусу в точке касания) и у них общая сторона АО и равные острые углы (так как АО - биссектриса) следовательно эти треугольники равны. Тогда и соответствующие стороны равны. Т.е. АВ = АС
Вас заинтересует
2 года назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад