в треугольнике abc проведена биссектриса al угол alc равен 88 угол abc равен 61 найдите угол acb ответ лайте в градусах
Ответы
Ответ дал:
0
Угол
ALB=180-112=68,
тогда угол BAL=180-106-68=6, так как AL- биссектриса, угол BAC=6+6=12 поэтому ACB=180-106-12=62
ALB=180-112=68,
тогда угол BAL=180-106-68=6, так как AL- биссектриса, угол BAC=6+6=12 поэтому ACB=180-106-12=62
Ответ дал:
0
Ответ:
∠ACB = 65°
Объяснение:
Дано:
В ΔABC (см. рисунок)
∠ABC=∠ABL=61°
∠ALC=88°
Найти: ∠ACB
Решение.
Так как ∠ALC=88°, то смежный с ним угол ∠ALB=180° - 88° = 92°.
Используем свойство: сумма внутренних углов треугольника равна 180°: ∠АLB+∠АBL+∠BАL=180°
Отсюда:
∠BAL = 180° - ∠ALB - ∠АBL = 180° - 92° - 61° = 27°.
Биссектриса делит ∠BАC пополам, то
∠BАC = 2·∠BAL = 2·27° = 54°.
Ещё раз используем свойство: сумма внутренних углов треугольника равна 180°: ∠BАC+∠АBC+∠АCB=180°
Отсюда:
∠ACB = 180° - ∠BАC - ∠АBC = 180° - 54° - 61° = 65°.
Ответ: ∠ACB = 65°.
Приложения:
Вас заинтересует
2 года назад
3 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад