В основании прямого параллелепипеда лежит ромб, площадь которого равна 60. Площадь диагональных сечений 72 и 60. Найти высоту параллелепипеда.
Приложите рисунок и подробное решение.
Ответы
Ответ дал:
0
площадь ромба равна половине произведения его диагоналей (т.к. они пересекаются под прямым углом)
поскольку параллелепипед прямой, его диагональные сечения - прямоугольники.
обозначим высоту параллелепипеда h
диагонали ромба равны 72/h и 60/h
площадь ромба = 60 = (72 / h * 60 / h) /2
h^2 = 72 * 60 / 2 / 60 = 36
h = 6 см
объем параллелепипеда = площадь основания * высоту = 60 * 6 = 360 см3
ответ: 360 см3
поскольку параллелепипед прямой, его диагональные сечения - прямоугольники.
обозначим высоту параллелепипеда h
диагонали ромба равны 72/h и 60/h
площадь ромба = 60 = (72 / h * 60 / h) /2
h^2 = 72 * 60 / 2 / 60 = 36
h = 6 см
объем параллелепипеда = площадь основания * высоту = 60 * 6 = 360 см3
ответ: 360 см3
Вас заинтересует
2 года назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад
9 лет назад