дан прямоугольный параллелепипед стороны основания которого равна 15 и 20. определить объем параллепипида если его диагональ образует с основанием угол 45
Ответы
Ответ дал:
0
в основании прямоугольного параллелепипеда прямоугольник со сторонами 15 и 20. По теореме Пифагора найдем диагональ прямоугольника (х)
x^2=15^2+20^2=225+400=625
x=25
Из условия задачи диагональ параллелепипеда образует с боковым ребром и диагональю основания равнобедренный прямоугольный треугольник, значит боковое ребро равно диагонали прямоугольника и равно 25
Объем параллелепипеда (V) равен произведению площади основания на боковое ребро
Площадь основания равна произведению сторон, и равна 15*20=300
V=300*25=7500
x^2=15^2+20^2=225+400=625
x=25
Из условия задачи диагональ параллелепипеда образует с боковым ребром и диагональю основания равнобедренный прямоугольный треугольник, значит боковое ребро равно диагонали прямоугольника и равно 25
Объем параллелепипеда (V) равен произведению площади основания на боковое ребро
Площадь основания равна произведению сторон, и равна 15*20=300
V=300*25=7500
Ответ дал:
0
а если 60 градус
Ответ дал:
0
7500√3 (если с нижним основанием)
2500√3 (если с верхним основанием)
2500√3 (если с верхним основанием)
Вас заинтересует
2 года назад
2 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад
10 лет назад