Помогите даю 35 балов
О функции f(x), заданной на всей вещественной прямой,
известно, что при любом a > 1 функция f(x) + f(ax) непрерывна на всей прямой.
Докажите, что f(x) также непрерывна на всей прямой.
Ответы
Ответ дал:
0
Дана непрерывная функция, значит нет деления на ноль, если дана функция
, то нет дроби как 
определяемая х не равной нулю, тогда функция
будет отличаться на множитель а, следовательно, это означает, что функция
непрерывная на всей прямой.
определяемая х не равной нулю, тогда функция
будет отличаться на множитель а, следовательно, это означает, что функция
непрерывная на всей прямой.
Ответ дал:
0
Спасибо
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
9 лет назад
10 лет назад