• Предмет: Математика
  • Автор: kiselevdeniska
  • Вопрос задан 8 лет назад

Нужна помощь с двумя заданиями. Завтра зачет по математике ,помогите

Первое:
Найти промежутки возрастания и убывания y=x+3x^2+4 (Хоть убейте так и не понял как это решать. Либо не хотел понять)

Второе:
Вычислить площадь фигуры ограниченной функциями y=x^2-4 ,y=0

Буду благодарен

Ответы

Ответ дал: Vasily1975
0

1. Находим и приравниваем нулю производную: y'=1+6*x=0, отсюда x=-1/6 - единственная критическая точка. Если x<-1/6, то y'<0, так что на промежутке (-∞;-1/6) функция убывает. Если же x>-1/6, то y'>0, так что на промежутке (-1/6;+∞) функция возрастает. Ответ: функция убывает на промежутке (-∞;-1/6) и возрастает на промежутке (-1/6;+∞).


2. Находим первообразную F(x)=∫(x²-4)*dx=x³/3-4*x+C. Так как фигура лежит под осью ОХ, то искомая площадь S=-[F(2)-F(-2)]=F(-2)-F(2)=(-8/3+8)-(8/3-8)=16-16/3=32/3. Ответ: S=32/3.

Вас заинтересует