• Предмет: Математика
  • Автор: sds22134
  • Вопрос задан 8 лет назад

Найдите производную функции Y.
y= x³+√x+tgx

Ответы

Ответ дал: 1233090
0
решение задания смотри на фотографии
Приложения:
Ответ дал: 1233090
0
спасибо за оценку
Ответ дал: hello93
0

y¹=3x²+ frac{1}{2sqrt{x}}   + frac{1}{cos^{2}x}

Приведём к общему знаменателю :

y'= frac{2sqrt{x}*cos^{2}x*3x^{2}+cos^{2}x+2sqrt{x}}{2sqrt{x}*cos^{2}x}  =frac{6x^{2}sqrt{x}*cos^{2}x+cos^{2}x+2sqrt{x}}{2sqrt{x}*cos^{2}x}

Можно немного проще

y'=3x²+ frac{1}{2sqrt{x}} +sec^{2}  x = frac{3x^{2}*2sqrt{x}+1+2sqrt{x}*sec^{2}x}{2sqrt{x}}     =frac{6x^{2}*2sqrt{x}+1+2sqrt{x}*sec^{2}x}{2sqrt{x}}

Приложения:
Вас заинтересует