• Предмет: Геометрия
  • Автор: Klarsi
  • Вопрос задан 8 лет назад

Пожалуйста помогите срочно!

Приложения:

Ответы

Ответ дал: Hrisula
0

Дан параллелограмм ABCD с длинами сторон 12 и 8. Биссектрисы его углов при пересечении образуют четырехугольник. Чему равна длина диагоналей этого четырехугольника?

-----------------

  По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм,LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4 (ед. длины)


Приложения:
Ответ дал: genius20
0
В какой программе вы делали рисунок?
Ответ дал: Hrisula
0
Рисунки делаю сама в Paint
Ответ дал: Simba2017
0
отличная и кропотливая работа!
Ответ дал: genius20
0
Попробуйте рисовать в GeoGebra — думаю, будет намного проще и быстрее)
Ответ дал: Hrisula
0
Спасибо, как-нибудь попробую.
Вас заинтересует