• Предмет: Математика
  • Автор: LinaFedorova
  • Вопрос задан 7 лет назад

Помогите с решением!
log_2(x+4)>=log_(4x+16)(8)

Ответы

Ответ дал: InvisorTech
0

 log_{2}(x+4) ge log_{(4x+16)}8 \ \ ODZ:  $left{ <br />      begin{gathered} <br />        x + 4 > 0 \ <br />        4x+16 > 0 \ 4x + 16 ne 1<br />      end{gathered} <br />right.$  ;  $left{ <br />      begin{gathered} <br />        x > -4 \ <br />        x ne -dfrac{15}{4} \ <br />      end{gathered} <br />right.$  ;  x in (-4;-dfrac{15}{4})cup ( -dfrac{15}{4}; +infty)


 log_{2}(x+4) ge dfrac{1}{log_{8}(4x+16)} \ \ log_{2}(x+4) ge dfrac{1}{frac{1}{3}log_{2}(4x+16)} \ \ log_{2}(x+4) ge dfrac{3}{log_{2}(4(x+4))} \ \ log_{2}(x+4) ge dfrac{3}{log_{2}(4) + log_{2}(x+4)} \ \ log_{2}(x+4) ge dfrac{3}{2 + log_{2}(x+4)} \ \ log_{2}(x+4) = t \ \ t ge dfrac{3}{2+t} \ \ dfrac{t^{2}+2t-3}{2+t} ge 0  \ \ dfrac{(t-1)(t+3)}{2+t} ge 0  (1)


 $left[ <br />      begin{gathered} <br />        -3 le t < -2  \ <br />        t ge 1 \ <br />      end{gathered} <br />right.$


 $left[ <br />      begin{gathered} <br />      -3 le log_{2}(x+4) < -2 \ <br />        log_{2}(x+4) ge 1 \ <br />      end{gathered} <br />right.$


 $left[ <br />      begin{gathered} <br />       $left{ <br />      begin{gathered} <br />        log_{2}(x+4) ge -3 \ <br />        log_{2}(x+4) < -2 \ <br />      end{gathered} <br />right.$ \ <br />        log_{2}(x+4) ge 1 \ <br />      end{gathered} <br />right.$


 $left[ <br />      begin{gathered} <br />       $left{ <br />      begin{gathered} <br />        log_{2}(x+4) ge log_{2}2^{-3} \ <br />        log_{2}(x+4) < log_{2}2^{-2} \ <br />      end{gathered} <br />right.$ \ <br />        log_{2}(x+4) ge log_{2}2^{1} \ <br />      end{gathered} <br />right.$


 $left[ <br />      begin{gathered} <br />       $left{ <br />      begin{gathered} <br />        x+4 ge 2^{-3} \ <br />        x+4 < 2^{-2} \ <br />      end{gathered} <br />right.$ \ <br />        x+4 ge 2 \ <br />      end{gathered} <br />right.$


 $left[ <br />      begin{gathered} <br />       $left{ <br />      begin{gathered} <br />        x ge -dfrac{31}{8} \ <br />        x < -dfrac{15}{4} \ <br />      end{gathered} <br />right.$ \ <br />        x ge -2 \ <br />      end{gathered} <br />right.$


 x in [-dfrac{31}{8}; -dfrac{15}{4}) cup [-2;+infty)


С учётом ОДЗ (2):

 x in [-dfrac{31}{8}; -dfrac{15}{4}) cup [-2;+infty)


Ответ: x ∈ [-31/8; -15/4)∪ [-2; +∞)

Приложения:
Вас заинтересует