Треугольник периметр которого 24, высотой делится на два треугольника, периметры которых равны 14 и 18. Найдите высоту данного треугольника.
Ответы
Ответ дал:
0
Обозначим стороны треугольника А,В,С. Периметр =А+В+С=24 Сторона АС (основание) разбивается высотой Н на две части: Х и (С-Х). оставим формулы периметров образовавшихся треугольников: Р1=А+Х+Н=14 Р2=В+(С-Х)+Н=18. Сложим эти два равенства, получим А+Х+Н+В+С-Х+Н=18+14+32. Сократим Н и -Н, получим А+В+С+2Н=32 Известно, что А+В+С=24 24+2Н=32 2Н=32-24=8 Н=4. Удачи)
Ответ дал:
0
........................
Приложения:

Вас заинтересует
2 года назад
2 года назад