• Предмет: Математика
  • Автор: nadia9437
  • Вопрос задан 8 лет назад

Вектор а составляет с положительным направлением оси OY угол 2 pi  /3.
Найдите координату y вектора а , если известно, что вектор а-по модулю равен 2 sqrt{3}

Ответы

Ответ дал: alkorb
0

Пусть вектор а имеет координаты (х,у)

возьмем вектор j, который лежит на оси OY и имеет координаты:

 vec{j}=(0,1) , тогда длина j равна:

 |vec{j}|=sqrt{0^2+1^2}= 1

по условию:

 (widehat{vec{a},vec{j}})=frac{2pi}{3}   , тогда

 cos(widehat{vec{a},vec{j}})=cosfrac{2pi}{3}=-0.5

Скалярное произведение векторов:

 vec{a}*vec{j}=x*0+y*1=y

c другой стороны:

  vec{a}*vec{j}=| vec{a}|*|vec{j}|*cos(widehat{ vec{a},vec{j}})

Подставляем известные данные и получаем:

 y=1*2sqrt{3} *(-0.5)=-sqrt{3} \ \ OTBET: -sqrt{3}

Вас заинтересует