• Предмет: Алгебра
  • Автор: Lanosha
  • Вопрос задан 8 лет назад

Решить квадратное уравнение, используя формулу корней квадратного уравнения со вторым четным коэффициентом:
а)6x^2+8x+5=0
б)12x^2-4x-1=0
в)25x^2-30x+9=0
г)7x^2-10x+4=0

Ответы

Ответ дал: artalex74
0

 1) 6x^2+8x+5=0\ k=frac{b}{2}=frac{8}{2}=4 \ D_1=k^2-ac=16-30=-14

 D_1<0 Rightarrow  корней нет

 2) 12x^2-4x-1=0\ k=frac{b}{2}=frac{-4}{2}=-2 \ D_1=k^2-ac=4+12=16>0\ x_{1,2}=frac{-k б sqrt{D_1}}{a}  = frac{2 б 4}{12} \ x_1=-frac{1}{6} ; x_2=frac{1}{2}

 3) 25x^2-30x+9=0\ k=frac{b}{2}=frac{-30}{2}=-15 \ D_1=k^2-ac=225-225=0\ x=frac{-k }{a}  = frac{15}{25} =frac{3}{5}

 4) 7x^2-10x+4=0\ k=frac{b}{2}=frac{-10}{2}=-5 \ D_1=k^2-ac=25-28=-3

 D_1<0 Rightarrow  корней нет

Вас заинтересует