• Предмет: Алгебра
  • Автор: Ingleshnick
  • Вопрос задан 7 лет назад

Упростить выражение - (a2/(a-b)(a-c))+(b2/(b-c)(b-a))+(c2/(c-a)(c-b))

Ответы

Ответ дал: snow99
0

 frac{ {a}^{2} }{(a - b)(a - c)}  +  frac{ {b}^{2} }{(b - c)( b - a)}  +   frac{ {c}^{2} }{(c - a)(c - b)}  =  frac{ {a}^{2} }{(a - b)(a - c)}  -  frac{ {b}^{2} }{(b - c)(a - b)}  +  frac{ {c}^{2} }{(a - c)(b - c)}  =  frac{ {a}^{2}(b - c) -  {b}^{2}  (a - c)}{(a - b)(a - c)(b - c)}  +  frac{ {c}^{2} }{(a - c)(b - c)}  =  frac{ {a}^{2}b -  {a}^{2}  c -  {b}^{2} a +  {b}^{2} c}{(a - b)(a - c)(b - c)}  +  frac{ {c}^{2} }{(a - c)(b - c)}  =  frac{ab(a - b) - c( {a}^{2} -  {b}^{2}  )}{(a - b)(a - c)(b - c)}  +  frac{ {c}^{2} }{(a - c)(b - c)}  =  frac{(a - b)(ab - c(a + b))}{(a - b)(a - c)(b - c)}  +  frac{ {c}^{2} }{(a - c)(b - c)}  =  frac{ab - ac - bc}{(a - c)(b - c)}  +  frac{ {c}^{2} }{(a - c)(b - c)}  =  frac{ab - ac - bc +  {c}^{2} }{(a - c)(b - c)}  =  frac{b(a - c) - c(a - c)}{(a - c)( b - c)}  =  frac{(a - c)(b - c)}{(a - c)(b - c)}  = 1
Вас заинтересует