Стрелок ведёт стрельбу по мишени имея 4 патрона. Вероятность попадания при первом выстреле равна 0,6, и увеличивается с каждой попыткой на 0,1. Определить вероятность попадания в мишень.
Ответы
Ответ дал:
0
Вероятность попадания в мишень определим через вероятность промаха по мишени:
p₊ = 1 - p₋
p₊ = 1 - (1 - 0,6)·(1 - (0,6 + 0,1))·(1 - (0,6 + 2·0,1))·(1 - (0,6 + 3·0,1)) = 1 - (1 - 0,6)·(1 - 0,7)·(1 - 0,8)·(1 - 0,9) = 1 - 0,4 · 0,3 · 0,2 · 0,1 = 1 - 0,0024 = 0,9976.
Ответ дал:
0
В среднем 10% продукции предприятия имеет брак. При покупке партии из 3-х
изделий контролер проверяет последовательно по одному взятому наудачу изделию,
не возвращая его после проверки обратно. При обнаружении бракованного изделия
партия бракуется вся. Составить закон распределения случайной величины - числа
сделанных контролером проверок. Построить функцию распределения, найти
математическое ожидание и дисперсию этой случайной величины.
изделий контролер проверяет последовательно по одному взятому наудачу изделию,
не возвращая его после проверки обратно. При обнаружении бракованного изделия
партия бракуется вся. Составить закон распределения случайной величины - числа
сделанных контролером проверок. Построить функцию распределения, найти
математическое ожидание и дисперсию этой случайной величины.
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
10 лет назад
10 лет назад