• Предмет: Геометрия
  • Автор: fenikselmar
  • Вопрос задан 8 лет назад

Точка O — центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=71° и ∠OAB=22°. Найдите угол BCO

Ответы

Ответ дал: soffka04
0
87°
360°(вся окружность) -(71+22) = 87°
Ответ дал: Hrisula
0

Ответ: 49°

Объяснение: Соединим В с центром окружности. ВО=АО=СО - радиусы.  

∆ АОВ - равнобедренный. Углы при основании равнобедренного треугольника равны. ⇒ ∠ОВА=∠ОАВ=22°.

∠СВО=СВА -∠ОВА=71°-22°=49°

∆СОВ равнобедренный.  Углы при основании равнобедренного треугольника равны. ⇒ ∠ВСО=∠СВО=49°.

Приложения:
Вас заинтересует