Высоты остроугольного равнобедренного треугольника ABC(AB=BC) пересекаются в точке H.Если высота AD этого треугольника равна 7, AH=4, то квадрат стороны AC равен. Решение
Ответы
Ответ дал:
0
ПЕРВЫЙ СПОСОБ:
▪ тр. АHE подобен тр. ACD по двум углам ( угол А - общий ; угол АЕН = угол АСD = 90°)
▪Составим отношения сходственных сторон:
AE / AD = AH / AC = HE / DC
AE = ( 1/2 ) • AC
Получаем следующее:
AE • АС = AD • AH
( 1/2 ) • AC • AC = AD • AH
( 1/2 ) • AC^2 = AD • AH
( 1/2 ) • AC^2 = 7 • 4
AC^2 = 56
ВТОРОЙ СПОСОБ:
▪В тр. АНЕ: cos A = AE / AH
▪В тр. АСD: cos A = AD / AC
Косинусы одних и тех же углов равны:
AE / AH = AD / AC
AE • AC = AD • AH
AE = ( 1/2 ) • AC
( 1/2 ) • AC • AC = AD • AH
( 1/2 ) • AC^2 = AD • AH
( 1/2 ) • AC^2 = 7 • 4
AC^2 = 56
ОТВЕТ: 56
▪ тр. АHE подобен тр. ACD по двум углам ( угол А - общий ; угол АЕН = угол АСD = 90°)
▪Составим отношения сходственных сторон:
AE / AD = AH / AC = HE / DC
AE = ( 1/2 ) • AC
Получаем следующее:
AE • АС = AD • AH
( 1/2 ) • AC • AC = AD • AH
( 1/2 ) • AC^2 = AD • AH
( 1/2 ) • AC^2 = 7 • 4
AC^2 = 56
ВТОРОЙ СПОСОБ:
▪В тр. АНЕ: cos A = AE / AH
▪В тр. АСD: cos A = AD / AC
Косинусы одних и тех же углов равны:
AE / AH = AD / AC
AE • AC = AD • AH
AE = ( 1/2 ) • AC
( 1/2 ) • AC • AC = AD • AH
( 1/2 ) • AC^2 = AD • AH
( 1/2 ) • AC^2 = 7 • 4
AC^2 = 56
ОТВЕТ: 56
Приложения:
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
10 лет назад