• Предмет: Алгебра
  • Автор: Lено4кА
  • Вопрос задан 10 лет назад

найдите корни уравнения sinx=1/2,принадлежащие отрезку [0;4пи] (полностью решение)

Ответы

Ответ дал: Аноним
0
sinx=1/2
x = пи/6 + 2пи*k  , k Є Z  - это первая четверть
x = 5пи/6 + 2пи*k  , k Є Z  - это вторая четверть
в третьей и четвертой  корней нет
в отрезок 
[0;4пи] попадают
x = {пи/6;5пи/6;13пи/6;17пи/6 }
Ответ дал: Rechnung
0
sinx= frac{1}{2} \xin(0;4pi)

Рисуем единичную окружность. Ось Оу- ось синусов. На ней отмечаем точку 1/2 и проводим прямую параллельную оси Ох. Эта прямая пересекает единичную окружность в двух точках. Если двигаться от нуля против часовой стрелки до точки пи/4, то в результате получаем точки:
 frac{pi}{6},  frac{5pi}{6},  frac{13pi}{6}, frac{17pi}{6}
Вас заинтересует