• Предмет: Алгебра
  • Автор: Devid111111
  • Вопрос задан 8 лет назад

Три коллекционера картин A, B и C выставили часть своих картин на аукцион. A выставил 3% своих картин, B — 7%, C — 20%. B купил все картины, выставленные A, C — выставленные B, A — выставленные C. Какое наименьшее (ненулевое) коли- чество картин могло быть выставлено на аукцион, если количество картин у каждого коллекционера не изменилось? Помогите пожалуйста

Ответы

Ответ дал: kmike21
0

у А было а картин, у В - b, у С -с

А выставил 0,03а картин, B 0,07b, C 0,2с

После того, как они выставили свои картины, у них осталось

у А 0,97а, у В 0,93b, у С 0,8с

Получаем системк уравнений

0,97a+0,2c=a

0,93b+0,03a=b

0,8c+0,07b=c

Решаем

0,2c=0,03a

0,03a=0,07b

0,07b=0,2c

Получаем

a=7b/3

с=7b/20

чтобы а было целым, b дожно быть кратным 3. Минимально возможное b=3. Кроме того 0,07b дожно также быть целым, поэтому минимальное b=300.

Тогда минимальное а=7*300/3=700 (0,3а=21, целое)

Минимальное с=7*300/20=105. (105*0,2=21, целое)

Надо найти a+b+c=700+300+105=1105 картин

Ответ дал: Devid111111
0
Это точно правильный ответ?
Ответ дал: senjeybro
0
да. у меня также
Ответ дал: igrog22822821
0
По идее неправвильно
Ответ дал: igrog22822821
0
Привельно*
Вас заинтересует