• Предмет: Математика
  • Автор: dmitrykuzmin98
  • Вопрос задан 7 лет назад

Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего заданному начальному условию: y`-(e^{-x})  * y = 2x   \y(0) = 1.

Приложения:

Ответы

Ответ дал: KayKosades
0

Разложение нужного решения в ряд Маклорена имеет вид

y(x)=y(0)+frac{y'(0)x}{1!} +frac{y''(0)x^2}{2!} +frac{y'''(0)x^3}{3!} +...+frac{y^{(n)}(0)}{n!} +...

Будем вычислять значения y'(0), y''(0), y'''(0), ...  пока не получим три ненулевых значения.

y'=2x+e^{-x}y\y'(0)=2*0+e^{-0}*1=1 neq 0\y''=(y')'=2-e^{-x}y+e^{-x}y'\y''(0)=2-e^{-0}*1+e^{-0}*1=2 neq 0\y'''=(y'')'=-(-e^{-x}y+e^{-x}y')-e^{-x}y'+e^{-x}y''=e^{-x}(y''-2y'+y)\y'''(0)=e^{-0}(2-2*1+1)=1 neq 0

С этим всё. Теперь подставим значения в первую формулу и после преобразований получим окончательный результат:

y(x)=1+x+x^2+frac{x^3}{6}



Вас заинтересует