Ответы
Ответ дал:
0
Доказательство проведем с помощью метода математической индукции. При n=2 неравенство принимает вид - верно. Пусть неравенство справедливо при n=k, то есть
докажем, что тогда оно справедливо и при n=k+1, то есть что
По предположению индукции .
Если мы докажем, что наша цель будет достигнута. Таким образом, достаточно доказать, что
что очевидно. На этом доказательство методом математической индукции завершено.
Ответ дал:
0
Большое спасибо!
Ответ дал:
0
;)
Ответ дал:
0
докажем с помощью матиндукции
1) при n=2

действительно,
домножим обе части на


это верно
2)пусть теперь
при n=k

3) докажем тогда, что при n=k+1

действительно

нам нужно по сути доказать
неравенство

а оно справедливо, так как, домножив его на

получим

это неравенство справедливо
для любых натуральных k≥2
поэтому мы доказали наше неравенство
при n=k+1
в предположении, что при n=k оно верно и проверили его при n=2
поэтому неравенство справедливо
для любых натуральных n≥2
1) при n=2
действительно,
домножим обе части на
это верно
2)пусть теперь
при n=k
3) докажем тогда, что при n=k+1
действительно
нам нужно по сути доказать
неравенство
а оно справедливо, так как, домножив его на
получим
это неравенство справедливо
для любых натуральных k≥2
поэтому мы доказали наше неравенство
при n=k+1
в предположении, что при n=k оно верно и проверили его при n=2
поэтому неравенство справедливо
для любых натуральных n≥2
Ответ дал:
0
Большое спасибо!
Ответ дал:
0
;)
Вас заинтересует
2 года назад
2 года назад
8 лет назад
8 лет назад