• Предмет: Математика
  • Автор: Аноним
  • Вопрос задан 8 лет назад

Решите биквадратное уравнение
16у²-8у²+1=0

Ответы

Ответ дал: daraprelj
0

16у⁴-8у²+1=0

Заменим y² на x. Получается следующее уравнение:

16x²-8x+1 = 0

a=16 b= -8 c = 1

D=b²-4ac

D=(-8)²- 4*16*1 = 64 - 64 = 0 => 1 корень

x = -b/2a

x = 8/2*16 = 8/32 = 1/4

Но т.к. у нас не x, а y², то получается следующее:

y² = 1/4

y = ±√1/4

y = ± 1/2

Вас заинтересует