• Предмет: Алгебра
  • Автор: andylusiosis
  • Вопрос задан 8 лет назад

SOS!SOS!SOS! решите неравенство 2^(2-x)>2x-3

Ответы

Ответ дал: d3782741
0

2^{2-x}>2x-3medskip\2^{2-x}-2x+3>0

Заметим, что x=2 - единственный корень уравнения 2^{2-x}-2x+3=0 , следовательно, график функции f(x)=2^{2-x}-2x+3 пересечёт ось абсцисс один раз в точке x=2. С корнем и по непрерывности данной функции, поймём, где она будет отрицательна, а где - положительна. Для этого найдём значения функции в точках больше и меньше 2.

f(3)=2^{2-3}-6+3=0{,}5-6+3=-2{,}5<0medskip\f(1)=2-2+3=3>0

Значит, наша функция следовала из своих положительных значений и прошла точку (2;0) к отрицательным. Следовательно, функция была положительна при xinleft(-infty;, 2).

Ответ. xinleft(-infty;, 2)

Вас заинтересует