• Предмет: Алгебра
  • Автор: olgakalchenko78
  • Вопрос задан 8 лет назад

Помогите пожалуйста решить задачу. Многочлен четвертой степени с положительным старшим коэффициентом имеет четыре корня, образующих арифметическую прогрессию с разностью 1. Найдите квадрат расстояния между точками минимума этого многочлена.

Ответы

Ответ дал: KayKosades
0

Наш многочлен имеет вид

P(x)=ax^4+bx^3+cx^2+dx+e

Пусть меньший его корень равен x_1. Так как корни образуют арифметичекую прогрессию, можем записать:

x_2=x_1+1\x_3=x_1+2\x_4=x_1+3

Многочлен раскладывается на линейный множители следующим образом:

P(x)=a(x-x_1)(x-x_1-1)(x-x_1-2)(x-x_1-3)

Напрашивается замена t=x-x_1. Тогда

P(t)=at(t-1)(t-2)(t-3)=a(t^4-6t^3+11t^2-6t)

Нам нужно найти минимумы этой функции, поэтому дифференцируем:

P'(t)=a(4t^3-18t^2+22t-6)

Теперь требуется найти корни этого многочлена. Используя теорему о рациональных корнях многочлена можно найти корень t=frac{3}{2}

Согласно теореме Безу, P'(t) должен делиться на 4(t-frac{3}{2} )=(4t-6). Разложим на множители, чтобы найти остальные корни:

P'(t)=a(4t^3-6t^2-12t^2+18t+4t-6)=a[t^2(4t-6)-3t(4t-6)+(4t-6)]=a(4t-6)(t^2-3t+1)

Решив квадратное уравнение t^2-3t+1=0, найдем корни

t_{1, 2}=frac{3pmsqrt{5} }{2}

Расположив корни

frac{3}{2},;frac{3pmsqrt{5} }{2}

на числовой прямой и использовав метод интервалов, узнаем, что производная меняет знак с минуса на плюс в точках t=frac{3pmsqrt{5} }{2}, это и есть точки минимума. Переходя обратно к многочлену от x, получаем точки

x_{min1}=frac{3+sqrt{5} }{2}+x_1\x_{min2}=frac{3-sqrt{5} }{2}+x_1

Квадрат расстояния между ними:

|x_{min2}-x_{min1}|^2=(sqrt{5} )^2=5

Вас заинтересует