• Предмет: Математика
  • Автор: JKNaj
  • Вопрос задан 8 лет назад

Найдите площадь треугольника ABN, если BN - медиана, а площадь ABC равна 60 см^2.

Ответы

Ответ дал: Arch31
0

Ответ:


Пошаговое объяснение:

Точка М делит АN в отношении 2 к 1, считая от А. треугольники AMB и

BMN имеют одинаковую высоту. Поэтому площадь ABM в два раза

больше площади BMN (у него основание в 2 раза больше) .Таким

образом, площадь ABM равна 22*2=44. Площадь ABN равна 22+44=66.

Далее. Медиана треугольника делит его на два равновеликих

треугольника. Поэтому площадь АВС равна 2*66=132.

ответ 132

Ответ дал: elvin5464
0
А откуда ты нашел 22 как
Ответ дал: elvin5464
0
????
Ответ дал: elvin5464
0
мне очень интересно
Ответ дал: Аноним
0

Медиана делит треугольник на два равновеликих треугольника. Равновеликие треугольники — это треугольники, имеющие равные площади.

Поэтому, S_{ABN}=dfrac{1}{2}S_{ABC}=30 см²

Вас заинтересует