Задача со счастливым концом - это утверждение о том, что если на плоскости отмечено пять точек (никакие три из которых не лежат на одной прямой), то из них можно выбрать четыре точки, образующие выпуклый многоугольник. Пал Эрдеш и Дьердь Секереш обобщили эту задачу на произвольное количество точек. Пал Эрдеш назвал эту задачу задачей со счастливым концом потому, что…
в итоге решение было найдено
было много неверных идей
в итоге Дьердь Секереш женился
все остались живы
                        
                            
                            
                    Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    Ответ:
Этот результат комбинаторной геометрии назван Палом Эрдёшем «задачей со счастливым концом», поскольку решение проблемы завершилось свадьбой Дьёрдя Секереша и Эстер Клейн (венг. Eszter Klein). Известна также как «теорема Эрдёша — Секереша о выпуклых многоугольниках».
Обобщения результата на произвольное число точек являются предметом интереса математиков XX и XXI веков.
Пошаговое объяснение:
Вас заинтересует
                
                        2 года назад
                    
                
                        2 года назад
                    
                
                        3 года назад
                    
                
                        3 года назад
                    
                
                        9 лет назад
                    
                
                        9 лет назад
                    
                
                        9 лет назад