в правильной треугольной пирамиде сторона основания равна 6 см,а высота 4 найти угол уклона бокового ребра к площади основания
Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    Если рассмотреть треугольник со сторонами, равными боковому ребру, высоте и (2/3) высоты основания пирамиды, то угол наклона будет угол между боковым ребром и (2/3) высоты треугольника, лежащего в основании.
По стороне основания найдем высоту основания. Она равна а √3/2=6√3/2=3√3, а 2/3 этой высоты равно 2√3 см, отношение высоты пирамиды к высоте основания пирамиды равно тангенсу угла наклона бокового ребра к плоскости основания, здесь 2/3 высоты осснования является проекцией бокового ребра на плоскость основания.
Итак, тангенс искомого угла равен
4/2√3=2/√3, тогда искомый угол это арктангенс (2/√3)
Вас заинтересует
                
                        2 года назад
                    
                
                        3 года назад
                    
                
                        3 года назад
                    
                
                        8 лет назад
                    
                
                        8 лет назад
                    
                
                        9 лет назад