• Предмет: Информатика
  • Автор: Женечка3487
  • Вопрос задан 8 лет назад

Предлагается некоторая операция над двумя произвольными трехзначными десятичными числами: Записывается результат сложения старших разрядов этих чисел. К нему дописывается результат сложения средних разрядов по такому правилу: если он меньше первой суммы, то полученное число приписывается к первому слева, иначе – справа. Итоговое число получают приписыванием справа к числу, полученному после второго шага, сумму значений младших разрядов исходных чисел. Какое из перечисленных чисел могло быть построено по этому правилу? 1) 141215 2)121514 3)141519 4)112112

Ответы

Ответ дал: grobka
0

Ответ:

2)121514

Объяснение:

Предположим, у нас такие два числа: abc и xyz.  

Сумма старших разрядов: a+x

Сумма средних разрядов: b+y

Сумма младших разрядов: c+z

При этом сумма двух разрядов не может быть больше 18, так как максимальная цифра в 10-ной системе счисления 9, то максимальная сумма двух цифр = 9+9=18.

т.е мы сразу исключаем вариант 3 и 4 т.к. в них присутствуют суммы разрядов 19 и 21, а такого быть не может.

Также есть условие

К нему дописывается результат сложения средних разрядов по такому правилу: если он меньше первой суммы, то полученное число приписывается к первому слева, иначе – справа.

То есть получается, что две первые суммы разрядов записаны в порядке возрастания, а по такому условию, из двух оставшихся подходит только вариант 2

Вас заинтересует