• Предмет: Алгебра
  • Автор: alinezhanabayeva
  • Вопрос задан 2 года назад

подрообнеее пожалуйста

Приложения:

Ответы

Ответ дал: sangers1959
1

Ответ: A).

Объяснение:

sinx+tg(x/2)=0

2*sin(x/2)*cos(x/2)+(sin(x/2)/cos(x/2))=0

sin(x/2)*(2*cos(x/2)+(1/cos(x/2))=0

sin(x/2)=0

x/2=πn  |×2

x₁=2πn.

2*cosx+(1/cos(x/2))=0

(2*cos²(x/2)+1)/cos(x/2)=0    

ОДЗ: cos(x/2)≠0   x/2≠π/2+πn  |×2           x≠π+2πn.

2*cos²(x/2)+1=0

2*cos²(x/2)=-1  так как 2*cos²(x/2)≥0  ⇒

Уравнение не имеет действительных корней.   ⇒

x=2πn, n∈Z ∈ОДЗ.

Вас заинтересует