• Предмет: Алгебра
  • Автор: Quiskur
  • Вопрос задан 1 год назад

Необходимо решить систему уравнений. Найти значение параметра, при котором нет решений, 1 решение, и x принадлежит R
\left \{ {{ax+2y=a+2 \atop {2ax+(a+1)y=2a+4}} \right.


Simba2017: вообще это 2 прямые
Simba2017: они или параллельны, или пересекаются или совпадают
Quiskur: Это и дураку ясно. Необходимо такие значения параметра, при которых выполняются данные условия. В теории я это понял, но, ввиду отсутствия на уроке, не могу решить пример
lidiasaraa3: фууууу
Simba2017: )))
Simba2017: это тема не пропущенного урока, если параметры сейчас решаете
Simba2017: прямые совпадают, если у них совпадают все коэффициенты или они пропорциональны
Quiskur: facepalm

Ответы

Ответ дал: AnonimusPro
1

\left \{ {{ax+2y=a+2 \atop {2ax+(a+1)y=2a+4}} \right.

приведем оба уравнения системы к виду y=kx+b(уравнение прямой).

1)\ ax+2y=a+2\\2y=a-ax+2\\2y=-a*x+a+2\\y=-\frac{a}{2}*x+\frac{a+2}{2} \\2)\ 2ax+(a+1)y=2a+4\\2ax+ay+y=2a+4\\y(a+1)=-2ax+2a+4\\y=-\frac{2a}{a+1} *x+\frac{2a+4}{a+1}

Если две прямые y_1 и y_2 заданы уравнениями y_1=k_1x+b_1 и y_2=k_2x+b_2 , то на плоскости они могут быть:

1)k_1=k_2 и b_1\neq b_2 - прямые параллельны, следовательно они не пересекаются и, следовательно, система из таких прямых не имеет решений.

2)k_1=k_2 и b_1=b_2 - прямые совпадают, следовательно, система из таких прямых будет иметь бесконечное множество решений.

3)k_1\neq k_2 - прямые пересекаются в одной точке, следовательно, система из таких прямых будет иметь только одно решение.

Применим это для решения данной задачи:

y_1=-\frac{a}{2}*x+\frac{a+2}{2}\\k_1=-\frac{a}{2};\ b_1=\frac{a+2}{2}\\y_2=-\frac{2a}{a+1} *x+\frac{2a+4}{a+1}\\k_2=-\frac{2a}{a+1};\ b_2=\frac{2a+4}{a+1}\\

1)\left \{ {{k_1=k_2} \atop {b_1\neq b_2}} \right. \Rightarrow \left \{ {{-\frac{a}{2}=-\frac{2a}{a+1}} \atop {\frac{a+2}{2}\neq \frac{2a+4}{a+1}}} \right. \Rightarrow \left \{ {{-a^2-a=-4a} \atop {a^2+2a+a+2\neq 4a+8}} \right. \Rightarrow \left \{ {{a^2-3a=0} \atop {a^2-a-6\neq 0}} \right. \\a^2-3a=0\\a(a-3)=0\\a_1=0;\ a_2=3\\a^2-a-6=0\\D=1+24=25=5^2\\ a_{3,4}=\frac{1\pm 5}{2} =3;\ -2

\left \{ {{\left[ \begin{array}{cc}a=0\\a=3\end{array}\right. } \atop {\left[ \begin{array}{cc}a\neq 3\\a\neq -2\end{array}\right.}} \right. \Rightarrow a=0

Значит, при a=0 данная система не имеет решений.

2)\left \{ {{k_1=k_2} \atop {b_1= b_2}} \right. \Rightarrow \left \{ {{-\frac{a}{2}=-\frac{2a}{a+1}} \atop {\frac{a+2}{2}= \frac{2a+4}{a+1}}} \right. \Rightarrow \left \{ {{-a^2-a=-4a} \atop {a^2+2a+a+2= 4a+8}} \right. \Rightarrow \left \{ {{a^2-3a=0} \atop {a^2-a-6= 0}} \right.\\\left \{ {{a^2-3a=0} \atop {a^2-a-6= 0}} \right.\\a^2-3a=0\\a(a-3)=0\\a_1=0;\ a_2=3\\a^2-a-6=0\\D=1+24=25=5^2\\ a_{3,4}=\frac{1\pm 5}{2} =3;\ -2\\a_2=a_3\Rightarrow a=3

Значит, при a=3 данная система имеет бесконечное множество решений.

При остальных значениях a система будет иметь только одно решение:

3)-\frac{a}{2}\neq -\frac{2a}{a+1}\\a^2-3a\neq 0\\a\neq 0;\ a\neq 3\\a\in (-\infty;0)\cup (0;3)\cup (3;+\infty)

В итоге:

a=0 \Rightarrow x\in \varnothing\\a=3\Rightarrow x\in R

a\in (-\infty;0)\cup (0;3)\cup (3;+\infty) \Rightarrow система имеет одно решение.

Ответ: a=0 => система не имеет решений(x∈∅)

           a=3 => система имеет бесконечное множество решений(x∈R)

           a∈(-∞;0)∪(0;3)∪(3;+∞) => система имеет одно решение.

Вас заинтересует