снование AD трапеции ABCD лежит в плоскости α. Через точки В и С
проведены параллельные прямые, пересекающие плоскость α в точках Е и F
соответственно. Доказать,что BCFE- параллелограмм
Ответы
Ответ дал:
0
прямая ВС параллельна АД, т.к. трапеция, и т.к. АД принадлежит плоскости а, то ВС будет парралельна любой прямой, принадлежащей плоскости а
ЕF принадлежит плоскости а, и значит ВС параллельно EF
ВЕ параллельно CF по условию, тогда противолежащие стороны в четырехугольнике BCEF попарно параллельны, т.е. он параллелограмм
ЕF принадлежит плоскости а, и значит ВС параллельно EF
ВЕ параллельно CF по условию, тогда противолежащие стороны в четырехугольнике BCEF попарно параллельны, т.е. он параллелограмм
Вас заинтересует
2 года назад
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад