в тетраэдре DABC точка M - середина AC, DB = 6, MD = 10, угол DMB = 90 градусов. Постройте сечение тетраэдра плоскостью, проходящей через середину ребра DC, параллельной плоскости DMB, и найдите плоскость сечения.
Ответы
Ответ дал:
0
Медианы треугольника пересекаются и точкой пересечения делятся в отношении 2:1, считая от вершины, поэтому
Вектор CM=23*вектор CL
Вектор CB=вектор CA+вектор AB=-вектор AC+вектор AB
Вектор CD=вектор CA+вектор AD=-вектор AC+вектор AD
Вектор EM=вектор EС+вектор СM=12*вектор AC+23 *вектор CL=12*вектор AC+23*12*(вектор CB+ вектор CD)= 12*вектор AC+13*(вектор CB+ вектор CD)=12*вектор AC+13*(-вектор AC+вектор AB-вектор AC+вектор AD)=
=-16 *вектор AC+13*вектор AB+13*вектор AD
Ответ: -16 *вектор AC+13*вектор AB+13*вектор AD
Вектор CM=23*вектор CL
Вектор CB=вектор CA+вектор AB=-вектор AC+вектор AB
Вектор CD=вектор CA+вектор AD=-вектор AC+вектор AD
Вектор EM=вектор EС+вектор СM=12*вектор AC+23 *вектор CL=12*вектор AC+23*12*(вектор CB+ вектор CD)= 12*вектор AC+13*(вектор CB+ вектор CD)=12*вектор AC+13*(-вектор AC+вектор AB-вектор AC+вектор AD)=
=-16 *вектор AC+13*вектор AB+13*вектор AD
Ответ: -16 *вектор AC+13*вектор AB+13*вектор AD
Вас заинтересует
2 года назад
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад